TECTONIC ARCHAEOLOGY

Subduction Zone Geology in Japan and its Archaeological Implications

Gina L. Barnes

Access Archaeology

ARCHAEOPRESS PUBLISHING LTD Summertown Pavilion 18-24 Middle Way Summertown Oxford OX2 7LG www.archaeopress.com

ISBN 978-1-80327-399-0 ISBN 978-1-80327-400-3 (e-Pdf)

© Gina L. Barnes and Archaeopress 2022

Cover: Geology of Asia 225Ma, by Fama Clamosa - Own work, CC BY-SA 4.0 [https://creativecommons. org/licenses/by-sa/4.0/legalcode] [https://commons.wikimedia.org/w/index.php?curid=85632155], modified by GLB with words and circle; the Japanese landmass did not look like this at that time, but its positioning is approximate.

All rights reserved. No part of this book may be reproduced, stored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the copyright owners.

This book is available direct from Archaeopress or from our website www.archaeopress.com

Dedicated to the memory of William R. Farrand 27 April 1931 — 22 March 2011

"William R. Farrand, Ph.D., professor of geological sciences, director of the Exhibit Museum, and curator, Museum of Anthropology, College of Literature, Science, and the Arts, will retire from active faculty status on June 30, 2000.

"Professor Farrand received his B.S. and M.S. degrees in 1955 and 1956, respectively, from The Ohio State University and his Ph.D. degree in 1960 from the University of Michigan. From 1960-64, he was on the faculty of Columbia University and in 1964-65 he was a visiting professor at the University of Strasbourg in France. He joined the faculty of the University of Michigan in 1965 as an assistant professor and was promoted to associate professor in 1967 and professor in 1974. He was named curator in the Museum of Anthropology in 1975 and director of the Exhibit Museum of Natural History in 1993. "Professor Farrand's early work centered on the glacial history of Michigan and the American/Canadian Midwest. He studied landforms and their evolution; the crustal rebound that occurs after the ice sheet load is removed from the earth's surface, and the history of the glacial advances and retreats. He was among the first to apply the techniques of radiocarbon dating to elucidate the timing of some of these events. Much of Professor Farrand's scholarship lay at the interface between geology and archaeology; in fact, his career helped to define the field of geoarchaeology. He was particularly interested in the sedimentology, stratigraphy, and paleoclimatology of archaeological and early man sites around the Mediterranean and has spent extensive periods of time working on sites in Syria, Jordan, Lebanon, Israel, Turkey, Greece, and elsewhere in Africa and the Far East.

"Professor Farrand taught courses at all levels and assisted with directing and teaching in the department's summer field program at Camp Davis, Wyoming. He published more than 120 papers, has served on the editorial boards of 4 journals, and has been president and secretary of the American Quaternary Association. Professor Farrand is a fellow of the American Association for the Advancement of Science and has been honored with the Archaeological Geology Award of the Geological Society of America.

"The Regents now salute this faculty member by naming William R. Farrand professor emeritus of geological sciences and curator emeritus."

University of Michigan Regents' Proceedings 344

Preface

This volume is a compilation of my work in the fields of Geoarchaeology and Geology developed through my research in Japanese archaeology. The result has been the formulation of an approach that is rooted in Plate Tectonics, as Japan is located in one of the world's many subduction zones (active margins) where an oceanic plate is being subducted below (drawn under) a continent. Japanese archaeologists themselves have developed several sub-disciplines that derive from subduction zone processes: volcanism, earthquakes, and tsunami. These can be bundled into a higher order unit that I term 'Tectonic Archaeology', which has a different focus on the archaeological remains than the sister subdiscipline, 'Disaster Archaeology'. By using Plate Tectonics to frame life and death in the Japanese Islands, one comes to a greater understanding of the deep Earth processes affecting the archipelago and the people who have lived through natural disasters (or not) and continue to deal with their occurrences and useful products. Many of the processes are applicable to other areas of the world, either at plate edges or intraplate locations. Therefore, whether one is specifically interested in Japan or not, this book is a first attempt at approaching archaeology through Plate Tectonics, using Japan as a case study. Neither a texbook nor a reference book, it should be taken as an exploration to see what new insights tectonics can offer archaeology. As stated by Cavazza et al. "A good knowledge of the interactions between deep processes (geodynamics) and surface processes (climate, erosion transport and deposition of sediments, as well as biosphere) is a prerequisite for risk assessment in such highly populated area [sic] as the Mediterranean shores and their hinterlands" (2004: 28, italics added). Although Japan's geology is complicated, it is nothing like the past and present compilation of the Mediterranean region, but the former can serve as a model on which to build understanding.

Readership

The chapters are bundled into an initial exploratory Chapter 1, three substantive Parts, and extended Appendices and Glossary/Indexes. The Parts are relevant to different readerships. Geoarchaeologists may be more interested in Chapter 1 - a survey of how tectonic processes are dealt with in the current geoarchaeological literature - followed by Part II which discusses the Japanese sub-disciplines of Tephroarchaeology, Earthquake Archaeology, and Tsunami Archaeology as well as containing chapters on hazard risk mitigation and jade formation. However, much of the terminology used in these chapters is defined and discussed in Chapter 2, accompanied by an extended Appendix and a detailed Glossary of geological terms. Part I, presents subduction zone geology through Japan as a case study and tracks the formation of the Japanese landmass through time from the Jurassic to present-day problems of volcanic soils in Japan. For both beginning geologists and archaeologists, Japan can serve as an introduction to subduction zones and deep Earth geodynamics and can illustrate how expertise in the tectonic archaeology subdisciplines widens understanding of the archaeological record. Japanologists may find Part I challenging but interesting vis-à-vis their background work in various parts of Japan. Parts I and II aim to give Japanese archaeologists a short course in Plate Tectonic processes and present the work of their colleagues in the tectonic sub-disciplines. Gemologists may be particularly interested in Chapter 12, which deals with the formation of the true jades (nephrite and jadeitite) in relation to subduction zone processes. It was questions about jade that first got me interested in geology and led me to Plate Tectonics. Landscape archaeologists may appreciate my struggle to understand Nara Basin geology and geoarchaeology (Part III) from the time of my dissertation research to the present, while the historical overview in Chapter 1 may give pause for reflection. Two chapters are devoted to correcting misconceptions about volcanic soils: Chapter 7 reveals that not all volcanic soils are beneficial, while Chapter 15 rectifies views on why Japan has a dearth of human and faunal remains.

Most of the chapters herein have been previously published as journal articles or chapters in edited books; they appear here with original publisher permissions. Much of the original texts have been reproduced in this volume with their original bibliographic citations. Where new information supersedes or expands these citations, additional bibliographical references have been supplied. The chapter texts have thus been rearranged, updated, and edited to appear here as an integrated presentation. Their derivations are discussed below, but please see the original publications for their individual acknowledgments.

Chapter Outline

In Chapter 1, I argue that Tectonic Archaeology, as I define it, is a foundation as well as an umbrella for Geoarchaeology. This chapter was originally published under the title "**Tectonic archaeology as a foundation for geoarchaeology**" in *Land* **2021**, 10, 453, 20pp. [https://doi.org/10.3390/land10050453]. It is reproduced here virtually unchanged. Rather than an introduction to the volume, this is an exploration of how 'tectonics' and associated processes have been represented in past geo-archaeological literature. It was discovered that there is a lack of discussion about what 'tectonics' actually means and how the term is applied to archaeology. This realization led to Chapter 2, which lays out the basics of subduction zone processes.

PART I A Geological Introduction to the Japanese Islands

Part I is designed to give a brief introduction to most aspects of Japanese geology. Although it can be used independently of the volume, many of the terms are defined in the volume's Glossary of geological terms – useful for non-geologists reading about Japanese geology for the first time – and the contents of the geological belts in Japan are given in Appendix 6. Many of the other appendices are designed to give more concrete information and context to the geological sequences described in the text.

The chapters in Part I draw firstly on three articles originally published in *Japan Review*, with permission from the International Research Center for Japanese Studies in Kyoto (Nichibunken): "**Origins of the Japanese Islands: the new 'Big Picture'**", *Japan Review* 15: 3-48 (2003); "**The making of the Japan Sea and the Japanese mountains: understanding Japan's volcanism in structural context**", *Japan Review* 20: 3-52 (2008); and "**Origins of Japan—the 'Big Picture' Revisited: A Review of New Plate Tectonics Research**", *Japan Review* 25: 169-184 (2013). These have been chopped up, edited, up-dated, and redistributed; the 2003 article forms the basis of Chapters 2 and 3 and Part I Reflections. The 2008 article forms the basis of Chapters 4 and 5. Much of the revised concepts in the 2013 article have been represented in these three chapters and Part I Reflections.

Essentially, the storyline of Chapter 2 documents Japanese involvement in Plate Tectonics research and applies Plate Tectonics principles to understanding tectonic activities in Japan. Chapter 3 discusses the geotectonic construction of the current Japanese Islands and traces the creation of the Japanese landmass at the edges of the China cratons from ca. 510 million years ago to the Miocene. Chapter 4 is about the physical rifting, together with rifting volcanics, of that landmass from the continental edge 15 million years ago to form the present-day Japanese archipelago, then how the main island of Honshu is being impacted by the collision of the Izu Arc. Chapter 5 looks at the evolution of the landscape to form the mountains, basins, and plains that are inhabited today.

Chapter 6 is a newly compiled chapter with material on igneous activity, partly drawn from *TephroArchaeology of the North Pacific*, edited by GL Barnes & T SODA [Oxford: Archaeopress (2019) with permission of Editor David Davison, but much new material has been gleaned from the general literature]. This chapter describes the igneous rock composition of the Japanese Islands that complements its basement structure of sedimentary Accretionary Complexes as presented in Chapter

3. And it takes as its jumping off point the collision of the Izu Arc with Honshu from 8 million years ago to examine the different ways the two oceanic plates, Pacific and Philippine, are subducting under northeast and southwest Japan respectively, providing very different volcanic and seismic structures to these areas. The more amazing issue is how the two plates overlap under central Honshu which, together with the Izu Arc collision, give this region an unusual tectonic character. The structures in each region from Hokkaido in the north to Okinawa in the south are examined for effects of plate movement and volcanism and how these may have changed over time. The latter is particularly of interest to archaeologists for the distribution of obsidian resources.

Chapter 7 is reproduced here in entirety from its original location as "**Tephra-derived soils of Japan in comparative context**", pp. 202-233 in *TephroArchaeology in the North Pacific*, ed. by GL Barnes & T SODA [Oxford: Archaeopress (2019) with permission]. It provides a counterexample to the generalized notion that volcanic soils are fertile and always productive for farming. Japanese volcanic soils are classed as andosols which occur there in two forms: one incorporating the amorphous clay called allophane and other colloids or the other not having these. Either way, the soils are not fertile, with nutrients captured in the colloids and made unavailable to plant growth or aluminium toxicity when the colloids are absent. There is tremendous archaeological interest in how the andosols were formed, which reflects on the habits of prehistoric peoples intentionally firing stands of *Miscanthus* reeds to increase hunting productivity.

PART II The Tectonic Archaeologies of Japan

Part II consists of three chapters reviewing the work of Japanese archaeologists on evidence of the occurrence of volcanic eruptions, earthquakes, and tsunami. These are also important to modern-day occupants, so that a chapter has been included on hazard determination and response. The final chapter on the formation processes of the true jades, nephrite and jadeitite, illustrates the close relationship between archaeological materials and Plate Tectonics.

Chapters 8 to 10 are reproduced here fairly faithfully except where reformatted, updated, and expanded where necessary. Some of the statements on general geology that appeared in the originals have been moved to other relevant chapters or appendices.

Chapter 8 is based on material in *TephroArchaeology of the North Pacific*, edited by GL Barnes & T SODA Oxford: Archaeopress (2019) and my article on "Vulnerable Japan: the volcanic setting of life in the archipelago", pp. 21-42 in *Environment and Society in the Japanese Islands*, ed. by Philip Brown & Bruce Batten [Corvallis, OR: Oregon State University Press (2015), with permission of Tom Booth, Director of OSU Press]. It explains why volcanic archaeology in Japan is dominated by tephra and how tephra cover changes the landscape as well as impacts on habitation. Several case studies are drawn from the 'homelands' of tephroarchaeology in Tohoku, Kanto and southern Kyushu in the above publications.

Chapter 9 originally appeared as "**Earthquake archaeology in Japan: an overview**", pp. 81-96 in *Ancient Earthquakes*, ed. by M Sintubin, IS Stewart, TM Niemi & E Altunel. Geological Society of America Special Paper 471 [Boulder, CO: GSA (2010); it appears here with permission from Jeanette Hammann, GSA Director of Publications.] It presents the development of archaeoseismology in Japan in parallel with that in the Mediterranean and demonstrates why and how earthquake evidence and damages are so different in the two areas. Recognizing sediment deformation at archaeological sites is an acquired skill for archaeologists. Moreover, this Chapter introduces the distinction between Active Fault earthquakes and subduction earthquakes – a distinction applicable around the world.

Chapter 10 reproduces my article "The search for tsunami evidence in the geological and archaeological records, with a focus on Japan." Asian Perspectives 56.2: 132-165 (2017) [with

permission of Pamela Wilson of Asian Perspectives and the University of Hawaii Press]. The subdiscipline of Tsunami Archaeology is very new and has mainly been conducted in New Zealand, but the 2011 Tohoku-oki Earthquake and subsequent tsunami has jump-started both archaeological and geological work in identyfying tsunami evidence in the archaeological record.

Chapter 11 draws on my article "**Vulnerable Japan: the volcanic setting of life in the archipelago**" noted above but expands to include hazard risk mitigation for earthquakes and tsunami as well as volcanic eruptions. It also deals with the interrelationships of these three tectonically based hazards in addition to examining typhoons and the fear of landslides in Japan. The overlap of Tectonic Archaeology with Disaster Archaeology is acknowledged and discussed because often tectonic and non-tectonic risks combine together to make hazardous living for populations past and present.

Chapter 12 takes us in a completely different direction but ties the work back directly to Plate Tectonics. It reviews the nature of false jades and nephrite as originally presented in my article "**Understanding Chinese jade in a world context**." *Journal of British Academy* 6: 1-63 (2018) [with reproduction permission by James Rivington, Head of Publications and Editor of the JBA]. But it has been expanded to include the problems with jadeite, using Itoigawa jade from Japan as an exemplar, and Chinese *feicui*, a relatively new entrant to the gemological world.

PART III Nara Basin Studies

Part III reviews the geology of the Nara Basin, where I did most of my state formation research, with up-to-date resources. Two geoarchaeological projects (coring and excavation) in the Nara Basin carried out by myself and colleagues tested my dissertation hypotheses, and the summary of that work is reproduced here. The last chapter goes beyond the Nara Basin to provide an explanation why bones are not regularly recovered in Japanese soils. This brings together various strands of tephroarchaeology, soil science, and climate data, and it corrects a critical misunderstanding about the nature of Japanese soils.

Chapter 13 is an updated version of an appendix to my dissertation, "**Nara Basin Geomorphology**," Appendix I to *Yayoi-Kofun Settlement Archaeology in the Nara Basin, Japan*. PhD dissertation, Department of Anthropology, University of Michigan. Ann Arbor: University Microfilms International (UMI, now ProQuest) (1983). This chapter has been vastly rewritten and updated to include reference to current resources available online for Japanese geology, which provide a much richer and detailed view of Nara Basin geology than accessible in the 1970s. Nevertheless, the original appendix underwrote two projects on landscape transformation in Nara that I summarized in 2005 "**Nara Basin Geoarchaeology**", with NISHIDA Shiro and OKITA Masa'aki, *Geoarchaeology: An International Journal* 20.8: 837-860, [DOI:10.1002/ gea.20085, reproduced with permission]. This summary appears only slightly updated as Chapter 14.

Finally, Chapter 15 consists of a reflection on why human and faunal remains are relatively rare in Japan by rebutting a common misconception about the nature of Japanese volcanic soils in Japan. Originally presented as "Acid Soils and Acid Rocks: Implications for Bone Preservation," at the 2004 Society for American Archaeology (SAA) conference in Montreal, Canada, it was published as a working paper in the panel proceedings (JAA 2004).

Acknowledgments

The acknowledgments for each published article incorporated herein are not reproduced here, but I thank all my colleagues who were involved in commenting on my work and offered constructive criticism as well as permissions to use their illustrations. For the early chapters in Part I, I wish to personally thank TAIRA Asahiko and ISOZAKI Yukio for their time and effort in discussing my original articles of 2003 and 2008.

In writing this new version, I have had the good fortune of communications with John Firth, a participant in the Ocean Drilling Project (ODP) investigating offshore geology of Japan. He has been a tireless reader of Part I and I have benefitted from his many comments, suggestions, and long reading lists. Other geologists and archaeologists, both in Japan and abroad, have kindly answered my questions and provided me with illustrative material. For this final draft, I am particularly indebted to Geoff Bailey for constructive criticisms and encouragement.

Many of the illustrations in PART I were redrawn by Linda Bosveld of the Durham Archaeological Services. I have updated and/or modified these from their original publications listed above as needed. For the remaining illustrations, I have modified figures found in the literature and offer them here for wider understanding. Colleagues who have donated illustrations are ISOZAKI Yukio, OKAMURA Yukinobu, SANGAWA Akira, MATSUDA Jun-ichirō, IIZUKA Yoshiyuki, Harald Furnes, Inna Safonova, Steve Smith, Denice Cabanban, and staff of Kagawa Prefectural Product Promotion Organization, Itoigawa Jade Workshop, and Kamitsukeno-sato Museum; the illustrations were gratefully received, and I also thank those who gave permission to reproduce their figures. All illustrative material is acknowledged in the Figure & Table Sources found at the end of each chapter.

A Personal Journey

My personal journey into geology is detailed here (optional reading) in the spirit of providing context to my research career in archaeology. It demonstrates to **early career researchers** how serendipity and curiosity can lead to unexpected changes in research directions.

My interest in Geoarchaeology began in the mid-1970s, at a time when that field was not yet fully developed and indeed the term was not yet well-known. Geology, on the other hand, has been my early retirement project, culminating in a BSc in Geosciences (Geology) in 2012 at age 65. In between these times, my major focus has been on state formation in East Asia (Barnes 1988, 1993, 2001, 2007, 2015). This volume is thus a record of a personal journey away from and beyond my original thematic study of state formation in Japan, which itself began with a Freshman Year Abroad at International Christian University in Tokyo when I studied Japanese art and archaeology under J. Edward Kidder and became enamoured with Kofun-period elite material culture (*haniwa* sculptures, crowns, gilt-bronze horse-trappings, jade curved beads, and the like). Having begun my Japanese language studies at ICU, I continued at the University of Colorado, taking a BA in Japanese Language & Literature with a double major in East Asian Civilizations. This equipped me with the background to do research in Japanese archaeology at the graduate level, using the Japanese language, once I caught up with archaeological training in the University of Michigan's MA programme.

Landscape archaeology & excavation

From the beginning of my graduate research in 1972 at the University of Michigan, I had two interests: one in the theory of state formation, and the other in the landscape within which the early state developed in Nara Prefecture, Japan (cf. Apx 2: Fig. A). The latter interest was stimulated by my auditing a course in "Archaeological Geology" in 1977, given by Bill Farrand in UofM's Geology Department. This covered dating methods, Plate Tectonics, rocks & minerals, weathering and soils, site sedimentology, geomorphology, paleoclimates, and Quaternary stratigraphy, laying the groundwork for my later geological interests. I dedicate this work to him and was lucky enough to tell him so before he unexpectedly passed away in 2011.

My dissertation fieldwork in the late 1970s in Nara (Barnes 1983, 1988) entailed landscape reconstruction carried out by aerial photograph analysis under the supervision of Prof. Y. Takehisa at Nara Women's University; then, fieldwork in the mid to late 1980s, while teaching East Asian

archaeology at Cambridge University (1981–1995), provided opportunities to test that reconstruction (Barnes 1992, 2005) with a geological coring project (JRG 1985, 1986) and an archaeological excavation (Barnes & Okita 1993). The appendix to my dissertation, updated and rewritten, and review of the two test projects are incorporated into Part III herein.

Jade & Plate Tectonics

While next teaching at Durham University (1996–2006), I became involved in a British Museum conference where I presented on jade (Barnes 1996), stimulating my interest in jade as a material – made into important prestige goods in the pre- and proto-historic societies of China, Korea, and Japan. I began by reading about jade; but having no background in Earth Sciences at the time, I did not understand the mineralogy. I thus resorted to reading books on Japanese geology in English, but these were even more impenetrable for reasons described in Chapter 2.1. Out of frustration, I pestered my colleagues in the Earth Sciences Department at Durham University to allow me to sit in on their classes, and when I exhausted those, I enrolled for courses in geology with the Open University. Japan did not form any part of these courses, but everything I learned was applicable to it.

The first thing that I became aware of was that the main books on Japanese geology available when I first started reading about it were still written within the former paradigm of geosyncline theory (Tomari 2005; see Chapter 2.1). As I learned the details about Plate Tectonics at the OU, I rewrote Japanese geology in the new paradigm for myself, just so that I could understand it. I published these study papers on the formation of the Japanese Islands in *Japan Review* (Barnes 2003, 2008, 2013), and they are incorporated here in PART I. These papers do not even qualify as Archaeological Geology since, as my husband complained, "but, there weren't even any human beings at that time". They are pure Geology. However, an understanding of Plate Tectonics – and the geology and Earth Sciences that it encompasses – underwrites the "wide variey of research methods and an eclectic approach to data" that is allegedly employed in Geoarchaeology and Archaeological Geology (Rapp 1982: 45); moreover, it makes the collection of data integrative rather than 'eclectic'.

In the late noughties, I became involved in the Seismological Society of America, via contacts with Iain Stewart and Manuel Sintubin, and gave a paper at the Santa Fe SSA conference in 2008 on earthquake archaeology in Japan, subsequently published in 2010 (Barnes 2010; Chapter 9 herein). My views on volcanic archaeology were published in 2015 (Barnes 2015; incorporated into Chapter 8), while tsunami archaeology followed in 2017 (Barnes 2017; Chapter 10 herein). The Japanese discipline of 'volcanic ash archaeology' has received my most recent attention. In 2016, I convened a panel together with my colleague SODA Tsutomu on tephroarchaeology (his translation of the Japanese term kazanbai kōkogaku, 'volcanic ash archaeology') at the World Archaeological Congress (WAC8) in Kyoto 2016. The papers from this conference together with other invited additions form our edited book, TephroArchaeology in the North Pacific (Barnes & Soda 2019, e-book available for free from the publisher's website). Material that I wrote for this volume has been integrated here in Chapters 6 and 8. It was only upon returning to the problem of jade in order to give a lecture, in 2017 for the Elsley Zeitlyn Lecture Series on Chinese Archaeology and Culture at the British Academy (Barnes 2018), that I realized Plate Tectonics was not a diversion from the study of jades – my initial stimulus for studying geology. True jades have *everything* to do with Plate Tectonics, and so the last Chapter of PART II (12) presents these findings -a fitting closure to a 20-year journey into geology that began with a question about jade.

Of course, I realized along the way that the most salient works on Japanese geology did not appear in English-language *textbooks* but in Japanese books and journals or in specialist English-language geology journals which were often buried behind paywalls of the big science publishers. Thus, it was imperative for me, in order to continue this line of studies, to have a continuing academic affiliation. Having retired

from Durham University in 2006, with my Department of East Asian Studies being closed down by the University in 2007, I was set adrift — but rescued by the late Jon Davidson, whose untimely death in 2016 was a great loss to us all and to the field of volcanology. In 2006, Maurice Tucker and Jon Davidson, both of the Durham Earth Sciences Department, agreed to nominate me as a Fellow of the Geological Society of London (FGS) on the basis of my previous geoarchaeological work, and then in 2012, I became a more legitimate Fellow upon completion of my BSc. Jon also supported my work through his Department, and his colleagues John Gluyas, Colin Macpherson, and Andrew (Andy) Aplin, Yaoling NIU, and Mark Allen, plus the able Department Manager Jill Hoult in the Earth Sciences Department have continued that support so that I can access the Durham University Library holdings remotely. I am eternally grateful for the opportunity to have continued my research under their umbrella.

2022 marks 50 years since I arrived at the University of Michigan to study archaeology and met my future husband, David Hughes, who taught me Japanese historical linguistics. Throughout this past half-century, David has been my constant and generous supporter in my career, often acting as my production editor and always as my proofreader for my many publications. I owe him my life as it has been, which I now dedicate to him for the rest of our years together.

Gina L Barnes BA, BSc, MA, PhD, FGS Emeritus Professor, Durham University Project Associate in Earth Sciences, Durham University Professorial Research Associate, SOAS University of London Fellow of the Geological Society of London

Further Reading

For those interested in pursuing the original research and updates for this book, I include comments here on the most critical resources. Two printed sources were especially useful in the composition of Part I. The first consists of thematic sections of the journal *The Island Arc* entitled "Geology and Orogeny of the Japanese Islands" (vol. 5.3, September 1996) and "Orogeny of the Japanese Islands" (vol. 6.1, March 1997); these represented the first holistic representation of Plate Tectonics and palaeogeography following the final abandonment of geosyncline theory by Japanese geologists. The *Island Arc* publications, in English, are notable for the colour plate reconstruction sequences of the continental clusterings (Maruyama 1997b), which could not be reproduced here but were especially enlightening. The second source was the multi-volume series on *Nihon no Chikei* (Japanese Landforms) published in Japanese by the University of Tokyo Press from 2000; the first volume *Sosetsu* (General Introduction) (Yonekura 2001) is especially useful for reviewing neotectonic processes. The descriptions of individual regions in different volumes of this series are informative interpretations of the lay of the land.

Within the last fifteen years since my initial two publications, in addition to innumerable scientific papers in published print and online journals, two sources have been particularly useful in revision. The most recent is a volume on *The Geology of Japan*, edited by Moreno *et al.* (2016), from the Geological Society of London; it is a specialist publication that informs the more accessible presentation here. The initial chapter in that volume (Taira *et al.* 2016) is an update and expansion of "Tectonic evolution of the Japanese island arc system" (Taira 2001) which I used in my original publication of 2003. The other source was a series of articles, in Japanese with English titles and abstracts, on 'New Paradigms' in Japanese Plate Tectonics published in the journal *Chigaku Zasshi* [Journal of Geography]. A review article in Engish accompanied them (Kasahara *et al.* 2010). Drawing on these *Chigaku Zasshi* publications, I wrote an update for my 2003 article in 2013, both published in *Japan Review* as listed above. Many of those comments therein are integrated here.

The New Paradigms series consists of thirty-five articles published in three parts under the title "Nihon Rettō Keiseishi to Jisedai Paradaimu" [Geotectonic Evolution of the Japanese Islands under New Paradigms of the Next Generation] in three issues of *Chigaku Zasshi*: 119.2 (2010), 119.6 (2010), and 120:1 (2011). All articles but one are in Japanese with English titles and abstracts, and most illustrations have captions in both Japanese and English for further perusal. Free PDFs of these articles are available via the *Chigaku Zasshi* website, or directly from J-Stage (Japan Science and Technology Agency [www.jstage. jst.go.jp]). The English abstract for each article gives a good indication of content, while every issue has its own preface in Japanese, in addition to the one overview in English (Kasahara *et al.* 2010).

References (omitting those detailed above)

- Barnes, Gina (1982) "Prehistoric landscape reconstruction and spatial analysis of artifact discovery locations." *Kokogaku to Shizen Kagaku* 15: 113-131 (in Japanese with English abstract).
- ---- (**1983**) Yayoi-Kofun settlement archaeology in the Nara Basin, Japan. Ann Arbor, MI.: University Microfilms (ProQuest). Published as Barnes 1988.
- ---- (1988) Protohistoric Yamato: archaeology of the first Japanese state. Anthropological Papers 78 and Modern Papers in Japanese Studies 17. Ann Arbor: Museum of Anthropology and the Center for Japanese Studies.
- ---- (1993) China, Korea and Japan: the rise of civilization in East Asia. London & New York: Thames & Hudson.
- ---- (1996) "China: questions in jade." The Times Higher Education Supplement 6(Dec): ii-iii.
- ---- (2001) State formation in Korea: historical and anthropological perspectives. Richmond: Curzon.
- ----- (2007) State formation in Japan: emergence of a 4th-century ruling elite. London: Routledge.
- ---- (2015) Archaeology of East Asia: the rise of civilization in China, Korea and Japan. Oxford: Oxbow Books.
- BARNES, Gina L & OKITA, Masaaki (eds) (1993) The Miwa Project: survey, coring and excavation at the Miwa site, Nara, Japan. BAR International Series 582. Oxford: Tempvs Reparatvm.
- BARNES, Gina L & Tsutomu Soda (eds) (2019) TephroArchaeology in the North Pacific. Oxford: Archaeopress.
- CAVAZZA, William; François ROURE & Peter A ZIEGLER (2004) "The Mediterranean area and the surrounding regions: active processes, remnants of former Tethyan Oceans and related thrust belts", pp. 1-30 in *The TRANSMED Atlas: the Mediterranean region from crust to mantle*, ed. by W CAVAZZA. Berlin: Springer.
- Isozakı, Yukio; Shigenori Maruyama & Kazumasa Aokı *et al.* (**2010**) "Geotectonic subdivision of the Japanese Islands revisited: categorization and definition of elements and boundaries of Pacific-type (Miyashiro-type) orogen." *Chigaku Zasshi* 119.6: 999-1053 (in Japanese with English title and abstract).
- JAA (Japanese Archaeological Association) (2004) Recent Palaeolithic studies in Japan: proceedings for tainted evidence and restoration of confidence in the Pleistocene archaeology of the Japanese archipelago. Tokyo: Japanese Archaeological Association.
- JRG [Joint Research Group on the Geomorphological Recognition and Land Utilization of Pre- and Protohistoric Japanese Peoples] (co-author) (**1986**) "Natural environments in the Nara Basin through the pre- and protohistoric ages I: geology and geomorphology." *Kobunkazai Kyoiku Kenkyu Hokoku* 16: 1-30 (in Japanese).
- ---- (1987) "Natural environments in the Nara Basin through the pre- and protohistoric ages II: descriptions of core samples and analysis on biogenic materials." *Kobunkazai Kyoiku Kenkyu Hokoku* 16(March): 23-74 (in Japanese).
- KASAHARA, Junzo; Osamu SANO & Nobuo GESHI *et al.* (2010) "Overview of a Special Issue on 'Geotectonic Evolution of the Japanese Islands under New Paradigms of the Next Generation (Part I-IIII)'." *Chigaku Zasshi* 119.6: 947-958 (in English).
- MARUYAMA, Shigenori; Yukio Isozaki & Gaku Kimura *et al.* (**1997**) "Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present." *The Island Arc* 6.1: 121-142 (in English).
- MORENO, Teresa; Simon WALLIS & Tomoko Kojima *et al.* (eds) (**2016**) *The geology of Japan.* London: Geological Society of London.
- RAPP, George Jr & John A GIFFORD (1982) "Archaeological geology." American Scientist 70. Jan-Feb: 45-53.
- TAIRA, Asahiko (2001) "Tectonic evolution of the Japanese island arc system." Annual Review of Earth and Planetary *Sciences* 29: 109-134.
- TAIRA, Asahito; Y OHARA & SR WALLIS *et al.* (2016) "Geological evolution of Japan: an overview", pp. 1-24 in *The geology of Japan*, ed. by T MORENO *et al.* London: Geological Society of London.
- TOMARI, Jiro (**2005**) "The concept of geosynclines and plate tectonics in Japan." *Kagakushi Kenkyū* 44.233: 23-32. YONEKURA, Nobuyuki; Sohei KAIZUKA & Michio NOGAMI et al. (eds) (**2001**) *Regional geomorphology of the Japanese*
 - Islands, Vol. 1: Introduction to Japanese geomorphology [Nihon no Chikei]. University of Tokyo Press.

Style Notes

• Abbreviations and acronyms can be found in Appendix 1.

• Special effort has been made to explain geological terms in the text; they appear in sans serif font on first use in each Chapter and are defined and indexed in the Glossary.

• Japanese administrative units (prefectures and districts) are presented in Apx 1: Fig. A, while Japanese archaeological periods are given in Apx 1: Tables A, B.

• Geological periodization is given in Apx 3.

• East Asian names are usually given surname first; the surname is in SMALL CAPS when accompanied by the personal name.

• British spelling is adopted but using 'z' as in *The Times* newspaper. Punctuation is generally American-style except for abbreviations (British abbreviations do not take a full stop [period] if the abbreviation includes the last letter of the word: e.g., ed. [editor] but eds [editors]).

• Dates are given coming forward for all BP, BC, and AD dates: e.g. 10,000–6000 BP = from 10,000 to 6,000 years ago; dates in the thousands BC are given without commas, as in dates AD. Millions of years *ago* are abbreviated as 'Ma' (*mega annum*); thousands of years *ago* are 'ka' (*kilo annum*); and billions of years *ago* Ga (*giga annum*); mya may also be used for million years *ago*.

• Date ranges (*duration*) are given as 'years', e.g., ky = a thousand years, my = a million years

• Japanese words and placenames are given in modified Hepburn (e.g. Tanba, rather than Tamba; Sanbagawa, rather than Sambagawa), though personal choices of name spellings are maintained if different from Hepburn romanization (e.g., Wadati, rather than Wadachi).

• Macrons for long vowels in Japanese are generally not shown except for italicized terms in the text or in bibliographical references.

• Certain terms are given capital letters for emphasis, as with Plate Tectonics, in that they reflect important concepts that have specific definitions in Japanese geology: e.g., Accretionary Complexes, Active Faults, Active Volcanoes.

Referencing System

• Acronyms are given in Apendix 1.

• Items in the glossary of Geological Terms appear in the text in sans serif font.

• The Glossary of East Asian Words is keyed to italicized terms in the text; kanji and meanings are given together with Chapter occurrence.

• Cross-references to Chapters and Figures in this volume are capitalized (Chapter, Figure, Table); those in other works are lower case (ch., fig., table); 'cf.' is used to mean 'see'.

• Figure and Table titles are by chapter, e.g., Figure 1.1 (first Figure in Chapter 1); their sources are given at the end of each chapter text before the bibliography.

• Figures and Tables in the Appendices are given letter referents, e.g., Apx 2: Figure A., specific to that appendix.

• Bibliographies for each chapter are included after that Chapter or Appendix; there is no overall book bibliography.

• Items in the bibliography that have no date (n.d.) are, if possible, given the date of the latest cited reference therein, e.g. \geq 2012 (published in or later than 2012).

• DOI numbers: these can be inserted into the 'find' field at [doi.org] to find the document online.

Creative Commons Licences for works shown herein: works may be copied and used according to the licences: CC BY-SA 2.0 [https://creativecommons.org/licenses/by-sa/2.0/legalcode] Figure 7.12 below

CC BY-SA 2.5 [https://creativecommons.org/licenses/by-sa/2.5/legalcode] Figure 11.2

CC BY-SA 3.0 [https://creativecommons.org/licenses/by-sa/3.0/legalcode]: Figures 2.6, 6.13, 7.11, 7.12 above, BOX 5: sundial; Figure 15.2; Apx 5: Fig. G

CC By-SA 4.0 [https://creativecommons.org/licenses/by-sa/4.0/legalcode] Figs. 7.9 right, 13.4, Apx 5: Figs. E&F

Table of Contents

Dedication to William R. Farrand	
Preface	i
Readership	i
Chapter Outline	ii
PART I A Geological Introduction to the Japanese Islands	ii
PART II The Tectonic Archaeologies of Japan	iii
PART III Nara Basin Studies	iv
Sources & Acknowledgments	iv
A Personal Journey	V
Landscape archaeology & excavation	vi
Jade & Plate Tectonics	vi
Style Notes	viii
Referencing System	ix
Chapter 1 Tectonic Archaeology vs Geoarchaeology	1
A Comparison, For Starters	1
Why Japan?	4
The 'Geo' in Geoarchaeology	5
Tectonics in Geoarchaeology	7
Tectonics in Major Scientific Archaeology Journals	9
1958, "Archaeometry"	10
1972, " Journal of Human Evolution"	10
1974, "Journal of Archaeological Science"	10
1986, "Geoarchaeology, an International Journal"	12
Journal summary	12
Books Inciting Great Expectations	12
1985, "Archaeological Geology"	12
2001, "Earth Sciences and Archaeology"	13
Tectonics	13
Earthquakes	14
2006, "Practical and Theoretical Geoarchaeology"	14
Tectonics	14
Tsunami	14
Tephra	15
Earthquakes	15
2009, "Geoarchaeology", the textbook	16
Tectonics	16
Volcanism	16
Seismicity	18
Tsunami	18
2017, "Encyclopedia of Geoarchaeology"	19
Reflections on books	19
Conclusions & Prospects	19
Further Reading	21

	Earth Sciences	21
	Plate Tectonics	21
	Tectonic Geomorphology	21
	Geoarchaeology	22
	Geological maps	22
PART I	A GEOLOGICAL INTRODUCTION TO THE JAPANESE ISLANDS	27
1) (Geological Time	27
	Jniformitarianism	27
	Plate Tectonics	27
,	stration: The Rock Cycle	28
Chapter	A Primer in Plate Tectonics, with Specific Reference to Japan	29
2.1	From Geosynclines to Plates	29
2.2	Plate Tectonics in Japan	30
	BOX 1 Early Contributions of Japanese Researchers to Plate Tectonic Theory	31
2.3	Tectonic Plate Construction	32
	2.3.1 Boundaries and distributions	32
	2.3.2 Types of Earth's crust	36
	2.3.2.1 Cratons & mobile belts	36
	2.3.2.2 Oceanic crust	37
	2.3.2.3 Continental crust	38
2.4	Subduction Zone Processes	38
	2.4.1 Overview	38
	2.4.2 Seismic processes	41
	2.4.2.1 Subduction vs Active Fault earthquakes	41
	2.4.2.2 Earthquake magnitude and intensity	42
	2.4.3 Igneous processes	44
	2.4.4 Accretionary orogens	45
	2.4.5 Collision tectonics	50
	2.4.6 Paired metamorphic belts	50
2.5	Metamorphism	51
	2.5.1 Metamorphic facies & series	51
	2.5.2 Types of metamorphism	52
	2.5.3 Burial & exhumation	55
2.6	Vertical Movements & Recycling	55
	2.6.1 Extensional & compressional tectonics	56
	2.6.2 Folds	56
	2.6.3 Faults	57
	2.6.3.1 General typologies	57
	2.6.3.2 Fault types specific to Japan	59
	2.6.4 Uplift	59
	2.6.5 Subsidence	60
	2.6.6 Isostacy	60
2.7	Obduction Processes & Ophiolites	62
2.8	Rifting Processes: combined extension, faulting, and volcanics	63
	Prospectus	65

Chapter 3 The Palaeogeographic Compilation of the Japanese Landmass	74
From Myth to Plate	74
Japan's Geological Belts	75
Classifications	75
80% Accretionary Complexes	77
20% Metamorphics and granites	78
Metamorphic Belts (MB)	78
Faults and Tectonic Lines (TL)	79
BOX 2 The Median Tectonic Line Museum	80
Looking Forward	81
Tracking Japan Throughout the Ages	81
Setting the stage	81
Precambrian events (before 541 Ma)	82
Palaeozoic ca. (541–300 Ma): evidence of early subduction	83
Permian (ca. 299–252 Ma): Farallon Plate subduction	86
BOX 3 The Akiyoshidai Karst Park of Western Honshu	87
Triassic (ca. 250–200 Ma): uniting the China blocks	87
Jurassic (ca. 200–145 Ma): meeting Izanagi	89
Pacific Basin plate reorganization ca. 170–65 Ma	90
Cretaceous (ca. 145–66 Ma): episodic growth	90
Peripheral developments from Cretaceous to the Palaeogene (66–23 Ma)	94
Hokkaido assembly	94
Philippine Plate & IBM Arc creation	95
Structural realignments	95
Conclusions	96
Chapter 4 Shaping the Japanese Archipelago	103
Revolutionary Advances	103
Rifting, Magmatism & Japan Sea Basin Formation	105
Opening of the Japan Sea Basin	105
The newly formed archipelago and sea	106
Competing hypotheses for rifting cause	108
Repositioning the Japanese landmass	109
The 'Green Tuff' Movement	110
BOX 4 The Geology of Oya-ishi Tuff and its Quarry Museum	113
The Setouchi Volcanic Zone	114
BOX 5 Sanukite Past and Present	115
Honshu–Izu Arc-Arc Collision & Ramifications	116
Arc-arc collision & accretion	117
The Kanto Syntaxis	117
The Fossa Magna	118
Perspectives	119
Chapter 5 Making Japan's Mountains & Basins	124
Setting the Stage	124
Plains, terraces & uplands	124
Changing tectonic regimes	125

Current landmass movement	126
Regional Landscape Changes	127
Post-rifting uplift & subsidence	127
Northeast Japan	128
Tohoku fold belts	129
Green Tuff basins	130
Central Japan	130
Kanto Basin	130
Faulted mountains	131
Southwest Japan	132
SW Japan & the Seto depression	132
The Kinki Triangle	133
BOX 6 The Inland Sea	135
Kyushu rotation	136
Conclusions	136
Chapter 6 Japan's Igneous Activity & Volcanic Arcs	140
Japan as a Volcanic Archipelago	140
Granitic rocks	141
Early volcanic rocks	141
Plio-Pleistocene Two-Plate Subduction Regime	142
Philippine vs Pacific Plate subduction	142
Quaternary volcanic fronts	143
Zonation geochemistry	144
Active volcanoes	145
Volcanic Eruption Patterns	145
Regional Volcanoes	148
Hokkaido: Kurile & NE Japan arcs	148
NE Japan Arc in Honshu	149
BOX 7 Towada Caldera	151
Central Honshu	151
SW Japan Arc	153
Arc characteristics	153
Continuing plume activity	155
Northwestern Honshu coast	155
Kyushu Island	156
Whole island concerns	156
Northwest Kyushu	156
Central Kyushu	157
Southwest Kyushu	157
Ryukyu Arc	159
Tephra	159
Definitions	159
Distributions	160
Kanto loam	162
Identification	164
Dating	165
Retrospection	167

l

Chapter 7 Tephra-derived Soils of Japan in comparative context	175
Tephrogenic Soils	175
Andosols: what are they?	175
Tephra in other soil classes	179
Implications	180
Tephra Transformations	180
From tephra to clay	181
Weathering of tephra	182
Weathering of volcanic glass into crystalline clays	183
Clay formation	184
Amorphous clays and alterite formation	185
Alteration rates	185
Turning tephra into soil	185
Plant activity	185
Nitrogen-N	186
Plant Regeneration	187
Andolization	188
Andolizer species	188
Andosol soil profiles	189
Grasslands as 'pyromes' International concerns	191
	191
Kurobokudo as a pyrome	192
Japanese grassland formation & continuity Kurobokudo and prehistoric humans	194 196
Andosol productivity	190
Andosol properties	197
General cropping	200
BOX 8 The Japanese Silk Industry on Volcanic Soils	200
Summary	201
Part I Reflections	210
The Relative Importance of Magmatism and Accretion Tectonics	210
Episodic Formation of the Japanese Landmass	210
Confusion over Collision	212
Nappes and thrust zones	212
Accretion vs collision	213
A New Paradigm: Second Continent Formation	214
Illustration: Plumes, second continents, and slab graveyards	214
Dividing Northeast and Southwest Japan	215
Japan as a Subduction Zone Product	215
Conclusions	216
PART II THE TECTONIC ARCHAEOLOGIES OF JAPAN	219
Chapter 8 TephroArchaeology	220
A Brief Comparison	220
TephroArchaeology in Japan	220

Development of the field	221
Why 'tephro'?	222
Homelands of TephroArchaeology	223
Artefact Distributions & Population Recovery in Kyushu	223
Aira eruption 30,000 BP: Palaeolithic consequences	224
Kikai eruption 7280 BP: Jomon consequences	225
Environmental recovery	227
Villages & Households	227
Northwest Kanto Plain: Mt Haruna & Mt Asama	227
BOX 9 Boulders Transported by Lahars	229
Nishigumi site: a farmyard buried in pumice	230
Kuroimine site: a village buried in pumice	231
The Kanai sites: elite attempts at escape	232
Mitsudera site: an abandoned housestead	233
Kanbara Kannondo Temple: last refuge	234
Northern Tohoku: Mt Towada & Mt Paektu	234
Katakai-Ienoshita site: the dragon lahar	234
Northern population migrations	235
Southern Kyushu: Mt Kaimondake	236
Hashimure-gawa site: destruction of a house236	
Preserved Field Systems	237
Paddy-fields	237
Horse hoofprints	238
Moto-Soja Kitakawa site: building a small dam	238
Field restoration & land use changes	239
Seasonality of eruptions	240
Interdisciplinary Contributions	241
Conclusions	242
Chapter 9 Earthquake Archaeology	248
The New Subdiscipline	248
Sangawa's creation	248
The Athens conference	249
Japan and the Mediterranean compared	250
Buildings in Japan	251
Damage to traditional and monumental architecture	251
Survival of traditional architecture	254
Earthquake Records	255
Earthquake Types & Archaeological Correlations	256
Subduction earthquake damage	256
Active Fault earthquake damage	257
Identifying and dating earthquake damage	258
Earthquake Evidence in Sediments	259
Liquefaction features	259
Soft-sediment deformation structures	262
BOX 10 Archaeological Contributions to Understanding the Kobe Earthquake	266
Concluding Remarks	268
0	=:0

Chapter 10 Tsunami Archaeology	273
Introduction	273
The New Field of Tsunami Archaeology	274
Defining and Measuring Tsunami	275
Definition	275
Causes	275
Measurements	276
Actions	278
Tsunami Sedimentary Evidence	278
Inundation processes	278
Identifying previous tsunami deposits	280
Cyclical Tsunami and Recovery	282
Tsunami Excavations in Japan: Case Studies	285
2011 Tohoku-oki tsunami	285
Sendai Plain, Miyagi Prefecture	285
Minami Soma-shi, Fukushima Prefecture	286
Takaose site, Iwanuma City, Miyagi Prefecture	287
Hasunuma site, Kujukuri-cho, Chiba Prefecture	287
1771 AD Yaeyama tsunami in the Ryukyu Islands	287
Miyako Island, Okinawa Prefecture	287
Ishigaki Island, Okinawa Prefecture	287
1707 AD tsunami from Philippine Plate subduction earthquakes	288
Shimizu Plain, Shizuoka Prefecture	288
Old Kobe Foreigners' Residence site, Kobe, Hyogo Prefecture	288
Ryujin Lake, Kyushu	289
869 AD (Jogan 11) Heian-period tsunami	289
Shimomasuda Iizuka Tomb Cluster, Natori City, Miyagi Prefecture	290
Middle Yayoi-period tsunami ca. 100 BC	290
Kutsukata site, Wakabayashi-ku, Sendai City, Miyagi Prefecture	291
Arai-Minami, Wakabayashi-ku, Sendai City, Miyagi Prefecture	292
Arai-Hirose site, Wakabayashi-ku, Sendai City, Miyagi Prefecture	292
Nakazaike-Minami site, Wakabayashi-ku, Sendai City, Miyagi Prefecture	292
Nakasuji site, Yamamoto-cho, Miyagi Prefecture	293
Middle Holocene tsunami after Kikai Akahoya eruption 7300 cal. BP	293
Yoko-o site, Oita City, Oita Prefecture	293
BOX 11 Surviving (or not) the Middle Yayoi Tsunami	294
Conclusions	294
Chapter 11 The Inter-relatedness of Tectonics & Hazard Research	302
The Hazards of Living in Japan	302
Volcanic Hazards	305
Prediction & monitoring	305
Mitigation	307
Fatalities	309
Earthquake Hazards	310
Earthquake types & magnitudes	310
Monitoring earthquakes	312

Earthquake warning systems	312
Earthquake & volcano interactions	313
The 'seismic staircase'	313
Tsunami Hazards	313
Major tsunami occurrences	314
Tsunami databases	314
Tsunami warning & prediction	316
Volcano & tsunami inter-relationships	316
Landslides	317
The most feared	317
Landslide generalities	317
Landslides in Japan	319
Typhoons	321
Tectonics & Disaster Archaeology	322
Becoming Disaster Archaeology	323
Disaster Archaeology in Japan	325
The 2011 Tohoku-oki earthquake and tsunami	326
Organizational outcomes	327
BOX 12 1995 Kobe Earthquake Disaster Monuments	328
Prospective	329
Chapter 12 True Jades, False Friends	338
Introduction	338
The category jade/yu	338
Rock vs mineral	339
New revelations from <i>feicui</i>	341
True Jades and False Friends	342
Archaeological perspectives	342
Modern marketing concerns	343
Plate Tectonics and Formation of True Jades	344
True Jade Minerals	347
The problem with nephrite	348
Nephrite: rock and minerals	348
Nephrite's solid solution minerals	349
Nephrite colours	351
Nephrite summary	352
BOX 13 Taiwanese Nephrite Case Study	353
Jadeitite problems	354
Jadeite-jade	354
P-jadeite	354
R-jadeite	356
P/T-jadeite	356
The other <i>feicui</i> jades	356
Kosmochlor-jade	356
Omphacite-jade	357
Jadeitite summary	358
True Jade Rocks and their Host Rocks	358

Hierarchical metamorphic processes	358
Three derivations of nephrite	360
Dnephrite from dolomite (dN)	360
Dnephrite via diopside	362
Snephrite from serpentine (sN)	362
Distinguishing sN and dN	362
Two derivations of jadeitite	364
Jadeitite from serpentinizing peridotite	364
Jadeitites within blueschist/eclogite rocks	365
Conclusions	365
BOX 14 Tectonic Contexts of Japanese Jadeitite	366

PART II REFLECTIONS

NARA BASIN STUDIES

PART III

373

375

Chapter 13 Nara Basin Geology & Geomorphology	377
Topographic Tour	377
Local Geology in Brief	380
Basement rocks	380
Rock types & sediments	381
Basin Faulting & Sedimentation	382
Tectonic basin formation	382
Sediment Groups & Formations	384
Sediments with respect to changing land/seascapes	384
Inland Sea #1	385
The Seto Depression	385
Second Setouchi Geologic Province / Inland Sea #2	385
Stage 1: Pliocene~early Early Pleistocene	386
Stage 2: late Early Pleistocene to early Middle Pleistocene	386
Stage 3: late Middle Pleistocene	387
<u>Stage 4</u> : Upper Pleistocene	389
Landforms for human occupation	389
'Terraces'	391
Holocene alluvium	393
River incision	393
An old lake in Nara?	394
Active Fault Systems	396
Fault types and locations	396
Earthquake record	400
Active Fault earthquakes	400
Subduction zone earthquakes	401
Earthquakes affecting Nara	401
Summary	403

Chapter 14 Cooperational Studios in News Japanethe Interneted Findings	400
Chapter 14 Geoarchaeological Studies in Nara, Japan: the Integrated Findings	409
Introduction	409
Prehistoric Occupation & Landscape Reconstruction	410
Lowland Geomorphology: the Asawa Project	412
Core, sediment, and water	413
Diatoms	415
Pollen	416
Phytolithes	418
Upland Geomorphology: the Miwa Project	420
The Miwa site location	421
Landform reconstruction	422
Terracing & re-terracing	423
Local environment & site use	425
A Final Valuation	426
	120
Chapter 15 Acid Soils and Acid Rocks: Misunderstood Implications for Bone	430
Preservation in Japan	
The Problem	430
Acidity: the pH Measure	431
Sediment acidity	431
BOX 15 The Principles of pH	432
Soil acidity	433
Acid Igneous Rocks vs pH Acidity	435
Igneous rock classifications	435
Alkaline igneous rocks vs pH alkalinity	436
Acidification by Climate and Plant Activity	438
Bone Preservation in Japan	439
Conclusions	439
Conclusions	442
Part III Reflections	445
	TIJ
Volume Conclusions	440
volume conclusions	448
APPENDICES (Tables and Figures within numbered below)	449
1 Abbreviations	449
2 Japanese Placenames & Periodizations	452
3 The Formal Timeline for Geological Chrono-stratigraphic Divisions	454
4 Reading Geological Maps	455
Basic considerations	455
National Resources	456
5 Elements, Minerals & Rocks	458
Elements	458
Minerals	458
Magma types	461
Igneous rocks	462
6 Major Geological Belts of Japan	465
7 Japan Earthquake Shaking Index	469

8 Geological Events Relating to Japan	470
9 Chronology of Japan Sea Basin Rifting and Rift Volcanics	473
10 Select Granitic Belts, Plutons, and Batholiths relating to Subduction Events	475
11 Major Pre-Miocene Volcanic Rock Bodies	476
12 Clay Groups and Their Characteristics	477
13 Volcanic Soils Geochemistry	478
Physical properties	478
Humus & humic and fulvic acids	479
Andosol nutrients	479
Nitrogen-N	480
Phosphorus-P	481
Potassium-K	482
Soil pH	482
Al toxicity & tolerance	482
14 Metasomatic processes	484
Dolomitization	484
Serpentinization	484
15 Legend for Nara Basin 'Seamless' Geological Map	486
16 Analysis of Sediment pH from Nara, Gunma, and Niigata	488
17 Value Ranges of pH for Soil Profiles of Japanese Soil Types	490
Classified Index	494
Glossary of East Asian Words	499
Glossary & Index of Geological Terms	501

BOXES	(including illustrations)	
BOX 1	Early Contributions of Japanese Researchers to Plate Tectonic Theory	31
BOX 2	The Median Tectonic Line (MTL) Museum	80
BOX 3	The Akiyoshidai Karst Park of Western Honshu	87
BOX 4	The Geology of Oya-ishi Tuff and its Quarry Museum	113
BOX 5	Sanukite Past and Present	115
BOX 6	The Inland Sea	136
BOX 7	Towada Caldera	151
BOX 8	The Japanese Silk Industry on Volcanic Soils	201
BOX 9	Boulders Transported by Lahars	229
BOX 10	Archaeological Contributions to Understanding the Kobe Earthquake	266
BOX 11	Surviving (or not) the Middle Yayoi Tsunami	294
BOX 12	1995 Kobe Earthquake Disaster Monuments	328
BOX 13	Taiwanese Nephrite Case Study	353
BOX 14	Tectonic Contexts of Japanese Jadeitite	366
BOX 15	pH Explained	430

FIGURES		
Part I Introd	luction to the Rock Cycle	28
Figure 2.1	Major plate divisions of the Earth's crust	33
Figure 2.2	Cross-section of the Earth	34

Figure 2.3	Japan at the juncture of four plates	35
Figure 2.4	Idealized ocean plate stratigraphy	37
Figure 2.5	The ideal life of an oceanic plate	39
Figure 2.6	Intensity of shaking during the 2011 Tohoku-oki earthquake	43
Figure 2.7	Seismic profile of the Nankai Prism in southwest Japan	48
Figure 2.8	Metamorphic facies, facies series, metamorphic grades	52
Figure 2.9	Fold geometry and terminology	57
÷	Major types of faults	58
-	Gravity and heat measurements around Japan	61
-	The ophiolite in the Isua Supercrustal Belt, Greenland	62
Figure 2.13	Mechanics of rifting	64
Figure 2.14	A seismic profile of the Japan Sea floor	64
Figure 3.1	The geotectonic belts of Japan	76
Figure 3.2	Complex contents of select geotectonic belts	77
Figure 3.3	Possible continental positions of Hida and Oki	83
Figure 3.4	Continental fragments and Palaeozoic geotectonic belts	84
Figure 3.5	Relations of North and South China Blocks after collision in the Triassic	88
Figure 3.6	Jurassic AC locations in modern-day Japan	89
Figure 3.7	Late Cretaceous geotectonic belts	91
Figure 3.8	Early and Late Cretaceous granites belts	92
Figure 3.9	Model of Philippine Plate rotation and movement	95
Figure 4.1	Geography of the Japan Sea Basin	103
Figure 4.2	Post-rifted Japanese Islands	104
Figure 4.3	Models for the opening of the Japan Sea Basin	110
Figure 4.4	The Green Tuff Zone	111
Figure 4.5	Green Tuff landscapes and artefacts	112
Figure 4.6	The Izu Arc on the Philippine Plate	116
Figure 4.7	The Kanto Syntaxis	118
Figure 5.1	Current neotectonic activity in Japan	126
Figure 5.2	Progressive uplift and subsidence	127
Figure 5.3	Folded Miocene–Pliocene hills	128
Figure 5.4	Basins between N–S trending mountain ranges in Tohoku	129
Figure 5.5	Tectonically formed mountain ranges in Japan	129
Figure 5.6	Cross-section of the Niigata Basin	130
Figure 5.7	Subsidence levels of the Kanto Basin	131
Figure 5.8	Faulted mountains of Kiso and Hida	131-2
Figure 5.9	Transect across western Honshu and Shikoku	133
Figure 5.10	-	134
Figure 5.11	Kyushu neotectonics	136
Figure 6.1	Mountains and plains of Japan	140
Figure 6.2	Volcanic Fronts, geochemical zones, and Active Volcanoes in modern Japan	144
Figure 6.3	Volcanic eruption 'styles'	146
Figure 6.4	Different eruption styles of Mt Asama	146
Figure 6.5	Volcanics in Hokkaido	148
Figure 6.6	Volcanism in Tohoku	150
Figure 6.7	The crater lake at Kusatsu-Shirane	151
Figure 6.8	Overlapping subducting plates under central Honshu	152

Figure 6.9	Obsidian resources and archaeological sites in Nagano Prefecture	153
Figure 6.10	SW Japan Arc volcanics	154
Figure 6.11	The Ryukyu Arc	158
Figure 6.12	Tephra identification by deposit type	159
Figure 6.13	The shirasu (Ito pumice)	160
-	Distributions of Aira and Kikai caldera tephra eruptions	161-2
Figure 6.15	Kanto loam development and distribution	163
Figure 6.16	Major Late Pleistocene marker-tephra distributions and volcanic soils	166
Figure 7.1	Distribution of andosols in Japan	176
Figure 7.2	The proposed ten Great Soil Groups of Japan	177
Figure 7.3	Distribution of allophanic and non-allophonic andosols in Japan	179
Figure 7.4	Layered phyllosilicates	179
Figure 7.5	Proposed structure of vitreous glass	182
Figure 7.6	Corrosion of glass by water	183
Figure 7.7	'Normal' clay and glassy rock clay successions	184
Figure 7.8	The Miscanthus fields of Sengokuhara, Japan	189
Figure 7.9	Soil profiles for genetic sequences and an allophanic andosol	189
Figure 7.10		190
•	Two bamboo types: sasa and nezasa	193
Figure 7.12	The annual celebratory firing of Mt Wakakusa	195
-	Ploughed fluffy andosol field	202
•	tions Plumes, second continents, and slab graveyards	214
Figure 8.1	The volcanoes of Kyushu and their pyroclastic flow extents	226
Figure 8.2	Mt Haruna eruptions from the Futatsudake vent	228
Figure 8.3	Housing complex, stables, and dry-fields at Nishigumi site, Gunma	231
Figure 8.4	A three-layered fence at Kanai Shimo-Shinden site, Gunma	232
Figure 8.5	The Mitsudera elite moated compound	233
Figure 8.6	Path of the Towada lahar down the Yoneshiro River drainage	234
Figure 8.7	Tohoku pit-house fills with different tephra stratigraphies	235
Figure 8.8	Five hypothesized stages of house destruction from tephra fallout	236
Figure 8.9	Stratified layers of different field sizes at Dodo site	237
Figure 8.10	Cross-section of the Sanbe forest buried by tephra	242
Figure 9.1	The Kondayama Tomb and Konda fault	249
Figure 9.2	A raised storehouse of Late Yayoi agriculturalists	251
Figure 9.3	Remains of an Early Kofun–period pit-building	251
Figure 9.4	Chinese-style architecture	252
Figure 9.5	Small landslips on the Oyama Tomb	253
Figure 9.6	Subduction earthquakes of southwestern Japan	256
Figure 9.7	Active faults in the Kinai region and archaeological sites	257
Figure 9.8	Liquefaction and faulted structures	259
Figure 9.9	Liquefaction draw-in of cultural materials	260
Figure 9.10	Liquefaction eruption of cobbles at the Late Yayoi Izumida site	261
Figure 9.11	Liquefaction structures at Nishi-Sanso/Yakumo-Higashi site	261
Figure 9.12	Correlation of soft-sediment deformation zones at Osaka sites	263
Figure 9.13	Soft-sediment deformation and anthropogenic zones at Kitoragawa site	264
Figure 9.14	Radiographs of soft-sediment deformation structures	265
Figure 10.1	Major geographical locations mentioned	274

Figure 10.2	Relationships between different tectonic activities and their possible repercussions	276
Figure 10.3	Comparison of tsunami and storm wave sand deposits	281
Figure 10.4	Heian occupation of Sendai Plain	290
Figure 10.5	Yayoi–Kofun occupation of the Natori River drainage on the Sendai Plain	291
Figure 10.6	Comparison of sand grain-sizes	292
Figure 11.1	Proportions of hazard risks in Japan	303
Figure 11.2	Volcanic hazard map for Mt Fuji	308
	Multiple landslides in southern Hokkaido after Iburi Earthquake	320
Figure 11.4	Interrelationships between society and nature	324
Figure 11.5	Disturbed archaeological storage at Nobiru, Higashi Matsushima	326
Figure 12.1	Loci of jadeite formation in the subduction channel	345
Figure 12.2	Back-arc basin closure in Tibet resulting in an ophiolite	346
Figure 12.3	Ternary composition diagram for the TAF-a solid solution series	350
Figure 12.4	Spot EMPA analyses on nephrite slit-rings	351
Figure 12.5	The ternary diagram for Q-Jd-Aeg	355
Figure 12.6	P/T conditions for albite vs jadeite+quartz formation	356
Figure 12.7	The hierarchical metamorphism of host rocks and jade mineral formation	359
-	The Alamas ophiolite	361
Figure 12.8b	2 Zoned nephrite in the Alamas ophiolite	361
U U	Distinguishing S-nephrite and D-nephrite by Factor Analysis	363
Figure 12.10	Cross-section of a jadeitite vein forming in serpentinite	364
Figure 12.11	Jadeitite pod formation in serpentinite	364
Figure 13.1	Modern view of Nara Basin and surroundings	378
Figure 13.2	Nara Basin landscape reconstruction	379
Figure 13.3	Nara Basin in the Ryoke Belt	380
Figure 13.4	Geology of the Nara Basin region	381
Figure 13.5	E-W section of Nara Basin at north end	383
Figure 13.6	Landform changes in central Japan from Early to Middle Pleistocene	387
Figure 13.7	Important sedimentary groups on the flanks of the Nara Basin	390
Figure 13.8	"Terrace" classifications along the eastern flank of the Nara Basin	392
Figure 13.9	The mistaken concept of an 'old lake' in the Nara Basin	394
Figure 13.10) Kinki Triangle faults	386
Figure 13.11	Fault segment definitions	397
Figure 13.12	2 Faults along eastern Osaka, Kyoto, and Nara Basins	397
Figure 14.1	Aerial photographic reconstruction of natural topography in the Nara Basin	410
Figure 14.2	Fence diagram of sediments overlying peat layers	412
Figure 14.3	Locations of cores taken in the 1984 Asawa Project	413
Figure 14.4	Radiocarbon dates of black carbonaceous clay deposits from the Asawa cores	414
Figure 14.5	Extent of ponding through time at Asawa	415
Figure 14.6	Changing proportions of SP, NAP, AP in the 1984 Asawa cores	418
Figure 14.7	Relative frequencies of Gramineae phytoliths in three cores at Asawa	419
Figure 14.8	The Miwa site area and location of the Shikishima Tenri-kyo Church	420
Figure 14.9	Reconstruction of landforms in the Miwa area	421
Figure 14.10) 1988 grid corings displayed on the 1989 resistivity survey	423
Figure 14.11	. Core transects from north to south	424
•	The pH logarithmic scale	431
Figure 15.2	Incipient Jomon burial in Oya tuff, Oya Temple, Tochigi	440

Figure 15.	3 An example of Late Kofun burial caves at Yoshimi, Saitama	440
Figure 15.4	4 Double burial at Shibu site, Nara	441
APPENDIX	K FIGURES	
Apx 2: Fig.	A Prefectures and districts in Japan	453
Apx 4: Fig.	A Geological map symbols	455
Apx 5: Fig.	A The Periodic Table of elements	459
Apx 5: Fig.	B The Bowen reaction series	460
Apx 5: Fig.		460
Apx 5: Fig.		461
Apx 5: Fig.	• • •	461
Apx 5: Tab		462
Apx 5: Fig.	e e e e e e e e e e e e e e e e e e e	462
Apx 5: Fig.	G IUGS classification of volcanic rocks	463
TABLES		
Table 1.1	Results of select journal online searches	11
Table 2.1	Comparison between subduction and Active Fault earthquakes	42
Table 2.2	JMA intensity and Modified Mercalli intensity levels	43
Table 2.3	Trajectories of metamorphic facies	52
Table 3.1	Plates, continents, and oceans through time in relation to Japan	82
Table 3.2	Palaeozoic arc remnants, serpentinite, and ophiolites	85
Table 3.3	Revisions in Japanese plate tectonics research	97
Table 4.1	Simplified chronology of Japan Sea Basin opening and volcanics	107
Table 5.1	Composition of some major plains i	124
Table 6.1	Comparison of Pacific and Philippine Plates	143
Table 6.2	Quaternary volcanic rocks in Hokkaido	149
Table 6.3	Particle composition of North and South Kanto loams	163
Table 6.4	Analyses leading to tephra identification	164
Table 7.1	Andosol characteristics	176
Table 7.2	Comparison of the two major andosol groups	178
Table 7.3	Tephric & vitric properties of soils compared	181
Table 7.4	Properties of the two main diagnostic andosol horizons	191
Table 7.5	Characteristics of five pyromes	192
	Andosol properties	198
	Comparisons of productivity among andosol types common in Japan	199
	Archaeologically relevant volcanic eruptions in Kyushu	224
	Major sites in Gunma affected by tephra cover	230
	Tephra fallout stages and their consequences at Kuroimine site	231
	Earthquake damage at archaeological sites in the Mediterranean and Japan	250
	Multiple causes of tsunami	276
	Ways of measuring tsunami	277
	Some diagnostic characteristics for distinguishing tsunami deposits	281
	Dates of major tsunami	283
	Comparative sand grain-sizes at Kutsukata site	292
	Differential settlement across the Sendai Plain through time	293
Table 11.1	Coloured triangle system for volcanic activity warnings	307

Table 11.2 Landsli	de types as presented by the USGS	318
Table 12.1 Compos	sition analysis of a 'nearly ideal tremolite' mineral	339
Table 12.2 Compa	risons of the two 'true jades'	340
Table 12.3. Disting	uishing tremolite, actinolite, and ferro-actinolite in solid solution	349
Table 12.4 Summa	ary chart of nephrite definitions and list of some associated minerals	352
Table 12.5 Chemic	al formulae of minerals mentioned in jadeite section	355
Table 12.6 Primar	and secondary minerals occurring in select worldwide jadeitites	357
Table 13.1 Compa	rison of traditional and redefined Osaka Group stages	386
Table 13.2 Sedime	ntary divisions in the Nara Basin	388
Table 13.3 Details	of some Active Faults in the Nara and Osaka Basins	398
Table 13.4 Instance	es of earthquakes felt in Nara	402
Table 14.1 Core su	mmaries for Asawa (1984) and Miwa (1988) coring projects	411
Table 14.2 Depths	of early-dated radiocarbon samples	414
Table 14.3 Forest	succession in the Nara Basin	416
Table 14.4 Stratig	raphic relationships of forest types in individual cores	417
Table 14.5 Radioc	arbon dates on wooden stakes from Trench 3 at Miwa	424
Table 15.1 pH dist	ributions of sample sediment/soil type	433
Table 15.2 Ranges	of pH values of soil types I to XXII	434
Table 15.3 Towad	a caldera Holocene tephras	436
Table 15.4 Minera	ls occurring in igneous rock types and their chemical formulae	437

APPENDIX TABLES

Apx 2: Table A	Jomon periodization	452
Apx 2: Table B	Yayoi-Kofun period divisions	452
Apx 3	Geological chrono-stratigraphic divisions	454
Apx 5: Fig. A	The Periodic Table	459
Apx 5: Table A	Major elements and minerals	460
Apx 5: Table B	Classification of igneous rocks by silica and grain-size	462
Apx 6	Major geological belts of Japan	465
Apx 7	JMA shaking intensity measure	469
Apx 8	Geological events relating to Japan	470
Apx 9	Chronology of Japan Sea Basin rifting and rift volcanics	473
Apx 10	Select granitic belts, plutons, and batholiths	475
Apx 11	Pre-Miocene volcanism	476
Apx 12: Table A	Clay groups and their characteristics	477
Apx 13: Table A	Humic substances, their relationships, and characteristics	480
Apx 13: Table B	Comparison of humic and fulvic acids	480
Apx 13: Table C	Comparison of P-sorbtion between andosols	482
Apx 15	Legend for Nara Basin 'Seamless' geological map	486
Apx 16	Analysis of Sediment pH from Nara, Gunma, and Niigata	488
Apx 17	Value Ranges of pH for Soil Profiles of Japanese Soil Types	490